If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35z^2-26z-48=0
a = 35; b = -26; c = -48;
Δ = b2-4ac
Δ = -262-4·35·(-48)
Δ = 7396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7396}=86$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-86}{2*35}=\frac{-60}{70} =-6/7 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+86}{2*35}=\frac{112}{70} =1+3/5 $
| -7(3+8b)=33-2b | | 4(x+3)=3x=+2+x | | X-1=-8x-70 | | 288=2x+6(5x+16) | | (3q+7)(q+2)=0 | | 5x2-33x+18=0 | | 3(-8n+6)=-126 | | (a+1)(a-4)=6 | | 8(1-2n)=120 | | -16x^2+55x+10=0 | | 288=2x+6(5x+16 | | 100000x+10234=1234782395739 | | -2(6-6p)=-84 | | 7y-7=8y | | 10(x+3)-(9x-4)=x-5-3 | | a3-5a+4=0 | | 5-(2x+3)=-1-2x-3 | | 186=1+5(1+6p) | | -2(-3b+4)+(7b-8)=0 | | 10(x+3)-(-9x-4)=x-53 | | -4=-(x-9) | | 5x+25=435 | | -x^2+2x+12=0 | | |f-6=|f+8| | | x2-14x+63=0 | | 3(x+5)-9=3(x+2) | | 5x*8+3x+4=-40+4 | | Z(y+8)-6(y+8)=0 | | 3g+6g+-48=42 | | 6x-4(-4x-28)=376 | | X/x+3=15/9 | | 8c2+34c+21=0 |